
© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 1

Multicast Performance Analysis for High-Speed Torus Networks

S. Oral and A. George
HCS Research Lab, ECE Dept., University of Florida, 32611, Gainesville, FL

{oral, george}@hcs.ufl.edu

Abstract

Overall efficiency of high-performance computing
clusters not only relies on the computing power of the
individual nodes, but also on the performance that the
underlying network can provide to the computational
application. Although modern high-performance
networks, especially System Area Networks (SANs), have
high unicast performance, they do not support multicast
communication in hardware. This research
experimentally evaluates the performance of various
protocols for unicast-based and path-based multicast
communication on high-speed torus networks. Software-
based multicast performance results of selected
algorithms on a 16-node Scalable Coherent Interface
(SCI) torus are given. The strengths and weaknesses of
the various protocols are illustrated in terms of startup
and completion latency, CPU utilization, and link
utilization and concurrency.

Keywords: collective communication, unicast-based
multicast, path-based multicast, torus networks, Scalable
Coherent Interface.

1. Introduction

Communication primitives for message-passing

parallel computing can be classified as point-to-point
(unicast), involving a single source and destination node,
or collective, involving more than two processes. Even if
collective communication is not strictly necessary for the
development of parallel programs, it usually plays a major
role both by simplifying programming tasks and enabling
a greater degree of portability among different platforms.
Therefore, efficient support of collective communications
is a critical issue in the design of networks for high-
performance parallel systems.

An important primitive among collective
communication operations is multicast communication.
Multicast communication is concerned with sending a
single message from a source node to a set of destination
nodes. This primitive can be used as a basis for many
collective operations, such as barrier synchronization and

global reduction, as well as cache invalidations in shared-
memory multiprocessors [1]. The multicast primitive also
functions as a useful tool in parallel numerical procedures
such as matrix multiplication and transposition,
eigenvalue computation, and Gauss elimination [2].
Moreover, this type of communication is used in parallel
search [3] and parallel graph algorithms [4]. Special
cases of this primitive include unicast, in which the
source node must transmit a message to a single
destination node, and broadcast, in which the destination
node set includes all network nodes.

Multicast communication algorithms can be
classified as unicast-based, path-based or tree-based [5].
In a unicast-based algorithm, the source node sends the
message to the destination node set as unicast-routed
messages. This type of communication does not require
any additional hardware support but incurs some degree
of message relaying overhead [1].

Unlike the unicast-based algorithms, path-based ones
require some degree of hardware support. This type of
communication is based on having separate processor and
router elements in each node, where the router has the
ability to relay the message to multiple output channels at
the same time. A worm that contains multiple destination
addresses in its header is the basis for path-based
communication. When a destination node receives this
worm, it simply removes its address from the header,
routes the message to the next destination node, copies
the message to its local buffer and replicates it on
different output channels if necessary. Finally, the last
destination node of each path entirely removes the worm
from the network [6].

For switched (indirect) networks, the message
routing is handled by the central switching elements
instead of the distributed routing units in each node.
Therefore, there is no direct mapping between the
switching elements and the processors, so the path-based
algorithms are inadequate for these types of networks. To
this limitation, tree-based algorithms were developed, in
which the source node injects a multi-destination worm
into the network and, at each central switching element
this worm is replicated to appropriate output ports as
separate multi-destination worms. Consequently, all
these worms follow different paths in the network,

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
Multicast Performance Analysis for High-Speed Torus Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Florida,Department of Electrical and Computer
Engineering,High-performance Computing and Simulation (HCS)
Research Laboratory,Gainesville,FL,32611

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 2

forming a multicast tree to deliver the message to
appropriate destination nodes [7].

In the context of this study, we have selected five
relevant multicast algorithms from the literature to be
evaluated for high-speed torus networks. Among these
algorithms, the separate addressing (also known as multi-
unicast) and the U-torus [8] protocols are unicast-based.
The other three are path-based multicast communication
algorithms, namely S-torus, Md-torus, and Mu-torus [9].

As a case study, the tradeoffs in the performance of
the selected algorithms are evaluated experimentally on a
2D torus network of Scalable Coherent Interface (SCI)
using the Wulfkit products from Dolphin/Scali [10]. The
Dolphin/Scali Wulfkit is a commercial implementation of
the SCI standard [11] that addresses networking and high-
performance computing domains. SCI is a System Area
Network (SAN) based on point-to-point links to form
unidirectional ringlets. Using these ringlets as a basic
building block, a large variety of topologies are possible,
such as counter-rotating rings and unidirectional or bi-
directional tori. Recent Wulfkit SCI networks have
become available that achieve ultra-low latencies (e.g. < 2
µs for one-way messaging) and high link data rates (e.g.
5.3 Gb/s) over point-to-point links with cut-through
switching [12].

The next section summarizes related work, followed
by Section 3 where a brief overview of the selected
multicast algorithms is provided. Section 4 provides a
detailed discussion of the setup, results and analysis from
the case study experiments. Finally, Section 5 provides
conclusions and directions for future work.

2. Related research

Research for multicast communication in the
literature can be briefly categorized into two groups,
unicast-based and multi-destination-based. Among the
unicast-based multicasting methods, separate addressing
is the simplest one, in which the source node iteratively
sends the message to each destination node one after
another as separate unicast transmissions. Another
approach for unicast-based multicasting is to use a multi-
phase communication configuration for delivering the
message to the destination nodes. In this method, the
destination nodes are organized in some sort of a binomial
tree, and at each communication step the number of nodes
covered increases by a factor of n. The U-torus multicast
algorithm proposed by Robinson et al. [8] is a slightly
modified version of this binomial-tree approach for direct
torus networks that use wormhole routing.

Lin and Ni [13] were the first to introduce and
investigate the path-based multicasting approach.
Subsequently, path-based multicast communication has
received attention and has been studied for direct

networks [8, 9, and 14]. Regarding path-based studies,
this research will concentrate on the work of Robinson et
al. [8, 9] in which they have defined S-torus, Md-torus,
Mu-torus algorithms. These algorithms were proposed as
a solution to the multicast communication problem for
generic, wormhole-routed, direct unidirectional and bi-
directional torus networks. More details about path-based
multicast algorithms for wormhole-routed networks can
be found in the survey of Li and McKinley [15]. Tree-
based multicasting also received attention [16, 17] and
these studies focused on solving the deadlock problem for
indirect networks.

SCI unicast performance analysis and modeling has
been discussed in literature [18-21], while collective
communication on SCI has received little attention and its
multicast communication characteristics are still unclear.
Limited studies on this avenue have used collective
communication primitives for assessing the scalability of
various SCI topologies from an analytical point of view
[22, 23], while no known study has yet investigated the
multicast performance of SCI.

This research focuses on evaluating the performance
of the selected unicast-based and path-based multicast
algorithms over high-speed torus networks. As a case
study, the selected algorithms are analyzed for the
Dolphin/Scali Wulfkit SCI network using a user-level
API. The algorithms are comparatively evaluated using
various metrics, including multicast completion latency,
start-up latencies, CPU load, link contention, and
concurrency.

3. Selected multicast algorithms

The algorithms analyzed in this study were defined in
the literature [8, 9]. This section will simply provide an
overview of how they work and briefly point out their
differences. Bound by the limits of available hardware,
we selected two unicast-based and three path-based
multicast algorithms for our research, thereby keeping an
acceptable degree of variety among different classes of
multicast routing algorithms. In this work, the aggregate
collection of all destination nodes and the source node is
called the multicast group. Therefore, for a given group
with size d, there are d−1 destination nodes.

Separate addressing
Among the selected unicast-based algorithms,

separate addressing is the simplest one. In this protocol,
the root node iteratively sends the message to all
destination nodes one after another as unicast messages.
For small group sizes and short messages, separate
addressing can be a cost-effective approach. However,
for large messages and large group sizes, the iterative
unicast transmissions may result in large host-processor
overhead. Another drawback of this protocol is the

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 3

linearly increasing multicast completion latencies with the
increasing group sizes. In a separate addressing
algorithm, for a given group of size d, there will be d−1
total communication steps in order to deliver to all of the
destination nodes. Figure 1(a) shows a typical scenario
for a group size of 10. The root node and the destination
nodes are clearly marked and the message transfers are
indicated. Alphabetic labels next to each arrow indicate
the individual paths, and the numerical labels represent
the logical communication steps (i.e. not the physical
number of hops involved).

U-torus
U-torus [8] is another unicast-based multicast

algorithm and it uses a binomial-tree approach to reduce
the required communication steps. For example, if we
assume a group with the size d, the lower bound on the
number of steps required to complete the multicast by U-
torus will be log2d. This reduction is achieved by
increasing the number of covered destination nodes by a
factor of 2 in each communication step.

Figure 1(b) illustrates a typical U-torus multicast
scenario for a group size of 10. Applying U-torus to this
group starts with dimension ordering of all the nodes,
including the root, and then rotating around to place the
root node at the beginning of the ordered list as given
below:

Φ ={(1,1), (1,2), (1,3), (2,2), (2,4), (3,1), (3,3), (4,1),
(4,2), (4,4)}

Φ’={(2,2), (2,4), (3,1), (3,3), (4,1), (4,2), (4,4), (1,1),
(1,2), (1,3)}

where Φ denotes the dimension-ordered group and Φ’
denotes the rotated version of Φ. The order in Φ’ also
defines the final ranking of the nodes, as they are
sequentially ranked starting from the leftmost node. As
an example for the Φ’ given above, node (2,2) has a
ranking of 0, node (2,4) has a ranking of 1, and the node
(1,3) has a ranking of 9.

After obtaining the Φ’, the root node sends the
message to the center node of the Φ’ to partition the
multicast problem of size d into two subsets of size d/2
and d/2. The center node is calculated by Eq. 1 as in
[8], where left denotes the ranking of the leftmost node,
and right denotes the ranking of the rightmost node.

 +−

+=
2

1leftrightleftcenter (1)

For the group given above, the left is rank 0 and the
right is 9, therefore the center is 5, which implies the node
(4,2). The root node not only transmits the multicast
message, but also the new partition’s subset information,

Dsubset, to the center node. Using the same example, at the
end of the first step the root node will have the subset

Dsubset_root = {(2,2), (2,4), (3,1), (3,3), (4,1)}

with the values of left and right being rank 0 and 4,
respectively. The node (4,2) will have the subset

Dsubset_(4,2) = {(4,2), (4,4), (1,1), (1,2), (1,3)}

with the values of left and right being again 0 and 4.
In the second step, the original root and the (4,2)

node both act as root nodes, partitioning their respective
subsets into two and sending the multicast message to
their subset’s center node, along with the new partition’s
Dsubset information. This process continues recursively
until all destination nodes have received the message.

S-torus
S-torus, a path-based multicast routing algorithm,

was defined by Robinson et al. [9] for wormhole-routed
torus networks. It is a single-phase communication
algorithm and the destination nodes are ranked and
ordered to form a Hamiltonian cycle. A Hamiltonian
cycle is a closed circuit that starts and ends at the source
node, where every other node is listed only once. For any
given network, more than one Hamiltonian cycle may
exist. The Hamiltonian cycle that S-torus uses is based on
a ranking order of nodes, which is calculated with the
formula given in Eq. 2 for a k-ary 2D torus.

()[] [])(mod)()()(110 ukkuuul σσσ ++= (2)

Here, l(u) represents the Hamiltonian ranking of a node u,
with the coordinates given as (σ0(u),σ1(u)). More detailed
information about Hamiltonian node rankings can be
found in [9]. Following this step, the ordered
Hamiltonian cycle Θ, is rotated around to place the root at
the beginning. This new set is named as Θ’.

The root node then issues a multi-destination worm
which visits each destination node one after another
following the Θ’ ordered set. At each destination node,
the header is truncated to remove the visited destination
address and the worm is re-routed to the next destination.
The algorithm continues until the last destination node
receives the message. Robinson et al. also proved that S-
torus routing is deadlock-free [9].

Figure 1(c) illustrates the S-torus algorithm for the
same example presented previously, where we assume a
network without wormhole routing. The Hamiltonian
rankings are noted in the superscript labels of each node,
where Θ and Θ’ are obtained as given below:

Θ = {4(1,3), 6(1,1), 7(1,2), 8(2,2), 10(2,4), 12(3,1),
14(3,3), 16(4,4), 17(4,1), 18(4,2)}

Θ’ = {8(2,2), 10(2,4), 12(3,1), 14(3,3), 16(4,4), 17(4,1),
18(4,2), 4(1,3), 6(1,1), 7(1,2)}

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 4

A1

B1

C1

D1

I1 H1

G1

E1

F1

AC1

B1
AA2

A1

B2
AB1

D1

C1

AA1

(a) Separate Addressing (b) U-torus

A9

A4

A6

A2

A1

A3A7

6

7

4

5

11

8

19

18

17

15

14

13

12

10

9

16

A5A8

B1B2

B3

A1
A3

A4

A2

A5B4

(c) S-torus (d) Mu-torus

B1B2

B3

C1 A1
A2

C2 A3D1

Multicast Root Node

Multicast Destination Node

Message Transfer Path

Network Connection

Idle Node

(e) Md-torus
Figure 1: Separate addressing (a), U-torus (b), S-torus (c), Mu-torus (d), and Md-torus (e) multicast algorithms for a
typical multicast scenario with a group size of 10. Individual message paths are marked alphabetically, and the

numerical labels represent the logical communication steps for each message path.

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 5

M-torus
Belying its simplicity, single-phase communication is

known for large latency variations for a large set of
destination nodes [24]. Therefore, to further improve the
S-torus algorithm, Robinson et al. proposed the multi-
phase multicast routing algorithm: M-torus [9]. The idea
was to shorten the path lengths of the multi-destination
worms to stabilize the latency variations and to achieve
better performance by partitioning the multicast group.
Furthermore, they introduced two variations of the M-
torus algorithm, Md-torus and Mu-torus. Md-torus uses a
dimensional partitioning method, whereas Mu-torus uses a
uniform partitioning mechanism. In both of these
algorithms, the root node separately transmits the
message to each partition and the message is then further
relayed inside the subsets using multi-destination worms.
The Md-torus algorithm partitions the nodes based on
their respective sub-torus dimensions, therefore
eliminating costly dimension-switching overhead. For
example, in a 3D torus, the algorithm will first partition
the group into subsets of 2D planes of the network, and
then into ringlets for each plane.

For a k-ary, N-dim torus network, where kN is the total
number of nodes, the Md-torus algorithm needs N steps to
complete the multicast operation. On the other hand, the
Mu-torus algorithm tries to minimize and equalize the
path length of each worm by applying a uniform
partitioning. Mu-torus is parameterized by the
partitioning size, denoted by r. For a group size of d, the
Mu-torus algorithm with a partitioning size of r requires
logr(d) steps to complete the multicast operation. For
the same example presented previously, Figures 1(d) and
(e) illustrate Mu-torus and Md-torus, again assuming a
network without wormhole routing.

4. Case study

To comparatively evaluate the performance of the
selected algorithms, an experimental case study is
conducted. The following subsections explain the details
of the experiments as well as the results obtained.

4.1. Description

The case study is performed on a 16-node system,
each with dual 1GHz Intel Pentium-III processors,
256MB of PC133 SDRAM, ServerSet III LE (rev 6)
chipset, and a 133MHz system bus. An SCI network is
used as the high-speed interconnect, where each node has
PCI64/66 SCI NICs with 5.3 Gb/s link speed using
Redhat Linux 7.2 with kernel version 2.4.7-10smp, mtrr
patched, and write-combining enabled. The nodes are
interconnected to form a 4×4 unidirectional SCI torus.

For all of the selected algorithms, the polling
notification method is used. Polling notification is an
approach to lower the latencies by simply putting the host
CPU into a constant check-state for completion flags.
Although it is known to be effective for achieving low
latencies, oftentimes it results in higher CPU loads,
especially if the polling process runs for extended periods.
Moreover, to have a fair comparison among the
algorithms and to decrease the completion latencies even
further, the multicast-tree creation process is removed
from the critical path, and the trees are generated at the
beginning of each algorithm in every node that
participates in the group. Additionally, a messaging
mechanism that guarantees the delivery is used to
decrease the number of required retransmissions and link
contentions. The routing among the destination nodes is
performed by Scali’s built-in SCA_ROUTE_MAXCY
function. SCA_ROUTE_MAXCY is a fault-tolerant routing
mechanism that, when all the nodes are fault-free,
behaves as a dimension-order routing algorithm [10].

Throughout the case study, modified versions of the
three path-based algorithms, S-torus, Md-torus, and Mu-
torus are used. These algorithms were originally designed
to multicast using multi-destination worms. However, as
with most high-speed interconnects for cluster computing,
our testbed does not support multi-destination worms.
Therefore, these three algorithms are modified as follows.
As each destination on a given path is visited by a multi-
destination message, the message is saved by that
destination node and a new message is generated that
proceeds to the next destination on the same path.

As mentioned previously, the Md-torus algorithm
uses a dimensional partitioning method which partitions
the destination nodes up to their lowest dimension
possible. Consequently, on our 4-ary 2-D torus testbed,
Md-torus applies a 1st-order dimensional partitioning
where the maximum partition lengths are naturally set as
4. To have a fair comparison between the Md-torus and
the Mu-torus algorithms, the partition length r of 4 is
chosen for Mu-torus algorithm.

The U-torus algorithm transfers not only the
multicast message from source to destination nodes, but
also the Dsubset information at each communication step.
Throughout the case study, the Dsubset information is
embedded in the relayed multicast message at each step.

Separate addressing is also a unicast-based algorithm
like U-torus, but it exhibits no algorithmic concurrency.
However, with a simple modification to provide network
pipelining, which enables multiple message transfers to
occur in an overlapping parallel fashion, it is possible to
provide concurrency with separate addressing.
Consequently, for our case study we use a network-
pipelining version of the separate addressing algorithm.
Overall, network pipelining combined with the

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 6

guaranteed message transfer mechanism mentioned
previously results in a non-blocking protocol for separate
addressing with high achievable concurrency.

The case study experiments with the algorithms are
performed for group sizes of 4, 6, 8, 10, 12, 14, and 16
and for message sizes of 2B and 512KB. Each algorithm
is evaluated for each message size and group size 100
times, where each execution had 50 repetitions. Four
different sets of experiments are performed to analyze the
various aspects of each algorithm in depth, and they are:
multicast completion latency, user-level CPU utilization,
multicast startup and tree-creation latency, and link
utilization and concurrency. For each algorithm, the
various latencies are probed and measured separately.
The maximum user-level CPU utilization of the root node
is measured using Linux’s built-in sar utility. Finally,
the link utilization and concurrency of each algorithm are
calculated for each group size based on the
communication pattern observed throughout the
experiments.

4.2. Multicast completion latency

Completion latency is an important metric for
evaluating and comparing different multicast algorithms,
as it reveals how suitable an algorithm is for a given
network. Two different sets of experiments for multicast
completion latency are performed in this case study, one
for a small message size of 2B, and the other for a large
message size of 512KB. Figure 2(a) illustrates the
multicast completion latency versus group size for small
messages, while Figure 2(b) presents the same for large

messages. It is evident that, for both small and large
messages, S-torus has the worst performance. Moreover,
S-torus shows a linear increase in multicast completion
latency with respect to the increasing group size, as it
exhibits no parallelism in message transfers.

By contrast, the separate addressing algorithm has a
higher level of parallelism (investigated further in Section
4.5) and, as a result, performs best for small messages.
However, separate addressing is also known for linearly
increasing completion latencies with increasing message
or group size, and this phenomenon can also be easily
seen from Figure 2(b).

The Md-torus and Mu-torus algorithms exhibit nearly
identical performance for both small and large messages,
as they are basically two versions of the same multi-phase
communication algorithm. The difference between these
two becomes more distinctive at certain data points, such
as 10- and 14- nodes for large messages. The Mu-torus
algorithm is evaluated using a partition length of 4. For
group sizes of 10 and 14 this parameter does not provide
perfectly balanced partitions. This imbalance results in
higher multicast completion latencies at these points, as
can be seen from Figure 2(b). For large message sizes,
the Md-torus algorithm outperforms the rest due to its
balanced partitioning.

Finally, U-torus has nearly flat latency values for
small messages. For large messages, it exhibits similar
behavior to Mu-torus, as its low link utilization becomes a
bottleneck for some group sizes, such as 10 and 14
(investigated further in Section 4.5).

0

200

400

600

800

1000

1200

1400

1600

4 6 8 10 12 14 16

Multicast Group Size (in nodes)

M
ul

tic
as

t C
om

pl
et

io
n

La
te

nc
y

(u
se

c)

U-torus S-torus Mu-torus Md-torus Sep. Add.

0

10000

20000

30000

40000

50000

60000

70000

4 6 8 10 12 14 16

Multicast Group Size (in nodes)

M
ul

tic
as

t C
om

pl
et

io
n

La
te

nc
y

(u
se

c)

U-torus S-torus Mu-torus Md-torus Sep. Add.
(a) 2B messages (b) 512KB messages

Figure 2: Completion latency vs. group size for small (a) and large (b) messages.

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 6 8 10 12 14 16

Multicast Group Size (in nodes)

C
P

U
 U

til
iz

at
io

n
(%

)

U-torus S-torus Mu-torus Md-torus Sep. Add.

0

1

2

3

4

5

6

7

8

9

4 6 8 10 12 14 16

Multicast Group Size (in nodes)

C
P

U
 U

til
iz

at
io

n
(%

)

U-torus S-torus Mu-torus Md-torus Sep. Add.
(a) 2B messages (b) 512KB messages

Figure 3: User-level CPU utilization vs. group size for small (a) and large (b) messages.

4.3. User-level CPU utilization

Host processor load is another useful metric to assess
the quality of a multicast protocol. Figures 3(a) and (b)
present the maximum CPU utilization for the root node of
each algorithm. The results are obtained for various
group sizes and for both small and large message sizes.

It is observed that S-torus exhibits constant CPU load
for the small message size independent of the group size.
However, for large messages, as the group size increases
the completion latency also linearly increases as
illustrated in Figure 2(b), and the extra polling involved
results in higher CPU utilization for the root node. This
effect is clearly seen in Figure 3(b).

In the separate addressing algorithm, the root node
iteratively performs all message transfers to the
destination nodes. As expected, this behavior causes a
nearly linear increase in CPU load with increasing group
size, which can be observed in Figure 3(b).

By contrast, since the number of message
transmissions for the root node stays constant, Md-torus
provides a nearly constant CPU overhead for small
messages for every group size. For large messages and
small group sizes, Md-torus performs similarly but for
group sizes greater than 10, the CPU utilization tends to
increase due to variations in the path lengths causing
extended polling durations. Although these variations are
the same for both small and the large messages, the effect
is more visible for the large message size.

Mu-torus exhibits behavior identical to Md-torus for
small messages. Moreover, for large messages, Mu-torus
also provides higher but constant CPU utilization.

For U-torus, the number of communication steps
required to cover all destination nodes is given in Section
3. It is observed that at certain group sizes, such as 4, 8,
and 16, the number of these steps increases, therefore the
CPU load also increases. This behavior of U-torus can be
clearly seen at Figures 3(a) and (b).

0

20000

40000

60000

80000

100000

120000

140000

4 6 8 10 12 14 16

Multicast Group Size (in nodes)

M
ul

tic
as

t S
ta

rtu
p

La
te

nc
y

(u
se

c)

Utorus Storus Mu-torus Mdtorus Sep. Add.

0

10

20

30

40

50

60

4 6 8 10 12 14 16
Multicast Group Size (in nodes)

M
ul

tic
as

t T
re

e
C

re
at

io
n

La
te

nc
y

(u
se

c)

U-torus S-torus Mu-torus Md-torus
(a) (b)

Figure 4: Startup latency (a) and tree-creation latency (b) vs. group size.

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 8

4.4. Startup latency

The multicast startup latency of the SCI API may
also be an important metric since, for small message
sizes, this factor might impede the overall communication
performance. In addition, multicast tree creation latencies
exhibit a similar effect. Figures 4(a) and (b) present these
two variables versus group size.

The U-torus and separate addressing algorithms have
unbounded fan-out numbers and, as clearly illustrated in
Figure 4(a), the startup latencies for these two algorithms
are identical and linearly increasing with group size. By
contrast, the S-torus and Md-torus algorithms have
constant startup latencies because of their fixed fan-out
numbers. Figure 4(b) presents the multicast tree creation
latencies for the four algorithms that use a tree-like group
formation for message delivery. The Mu-torus and Md-
torus algorithms only differ in their partitioning methods
as described before and both methods are quite complex
compared to the other algorithms. This complexity is
seen in Figure 4(b) as they exhibit the highest multicast
tree-creation latencies.

U-torus has a simple and distributed partitioning
process and, compared to the two M-torus algorithms, it
has lower tree-creation latency. However, unlike the
other tree-based algorithms, S-torus does not perform any
partitioning and it only orders the destination nodes as
described previously. Therefore, S-torus exhibits the
lowest and a very-slowly and linearly increasing latency,
due to the simplicity of its tree formation.

4.5. Link utilization and concurrency

Link utilization and concurrency are also metrics that
are used to evaluate the selected routing algorithms. Link

utilization can be divided into two components as number
of link visits and number of used links. Link visits is
defined as the cumulative number of links used during the
entire communication process, while used links is defined
as the number of individual links used. Link utilization,
which is the ratio of the number of link visits to the
number of used links, given in Figure 5(a) may not alone
reveal useful insight. However, when combined with the
concurrency presented in Figure 5(b), it illustrates the
degree of communication balance for each algorithm.
When analyzing the results in Figure 5, it is important to
note the relationship between them. For example, a case
where an algorithm has high link utilization and low
concurrency reveals a possible contention problem. On
the other hand, a high link-utilization with a high
concurrency indicates that the algorithm is using the
network effectively.

S-torus is a simple chained communication and there
is only one active message transfer in the network at any
given time. Therefore, S-torus has the lowest and a
constant link utilization and concurrency compared to
other algorithms, as can be seen in Figure 5. By contrast,
due to the high parallelism provided by the recursive
doubling approach, the U-torus algorithm has the highest
concurrency. Separate addressing exhibits an identical
degree of concurrency to the U-torus, because of the
multiple message transfers overlapping at the same time
due to the network pipelining. Also notable is that the
high link utilization of separate addressing is the result of
its link visits increasing more rapidly compared to the
number of used links.

As can be seen from Figure 5(a), the Md-torus has
inversely proportional link utilization versus increasing
group size. The explanation for this behavior can be

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4 6 8 10 12 14 16

Multicast Group Size (in nodes)

Li
nk

 U
til

iz
at

io
n

U-torus S-torus Mu-torus Md-torus Sep. Add.

0

1

2

3

4

5

6

7

4 6 8 10 12 14 16

Multicast Group Size (in nodes)

C
on

cu
rre

nc
y

U-torus S-torus Mu-torus Md-torus Sep. Add.
(a) (b)
Figure 5: Link utilization (a) and concurrency (b) vs. group size.

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 9

obtained from an analysis of the Md-torus algorithm. In
Md-torus, the root node first sends the message to the
destination header nodes, and they relay it to their child
nodes. As the number of dimensional header nodes is
constant (k in a k-ary torus), with the increasing group
size each new child node added to the group will increase
the number of available links. Moreover, due to the
communication structure of the Md-torus, the number of
links used increases much more rapidly compared to the
number of link visits with the increasing group size,
which overall will asymptotically limit the decreasing link
utilization at 1. Additionally, as each dimensional header
relays the message using separate ringlets, the
concurrency of Md-torus is upper bounded by the value of
the k, which in our experiments is 4. This behavior can
be observed from Figure 5(b) for data points greater than
8 nodes.

The Mu-torus algorithm has low link utilization as
can be seen in Figure 5(a) for all group sizes. The reason
is that Mu-torus multicasts the message to the partitioned
destination nodes over a limited number of individual
paths as shown in Figure 1(d), where in each path there is
only a single link used at a time. By contrast, for a given
partition length of constant size, an increase in the group
size results not only in an increase in the number of
partitions but also in the number of individual paths.
Overall, this trait results in more messages being
concurrently transferred at any given time over the entire
network, as seen in Figure 5(b).

5. Conclusions

In this study, five different multicast algorithms for
high-performance torus networks are evaluated. These
algorithms are analyzed on direct SCI networks and their
performances are examined under different configurations
using various metrics for the case study.

As the separate addressing protocol uses network
pipelining to hide the sender overhead, it appears to be the
best choice for small messages and group sizes from the
perspective of multicast completion latency. On the other
hand, for large messages, the separate addressing
algorithm has a nearly linear increase in completion
latency with increasing group size. Also, as expected, the
separate addressing protocol has a nearly linear increase
in CPU utilization with increasing group size.

From the perspective of completion latency, for large
messages and group sizes, the Md-torus algorithm
performs best because of the balance provided by its use
of dimensional partitioning. In addition, the Md-torus
algorithm incurs a very low CPU overhead and achieves
high concurrency for all the message and group sizes
considered. As group size increases, the number of used

links increases more rapidly, and thus the Md-torus
algorithm achieves a more balanced communication.

It is also observed that the U-torus and Mu-torus
algorithms perform better when the individual multicast
path depths are approximately equal. Furthermore, the
Mu-torus algorithm exhibits best performance when group
size is an exact multiple of the partition length r. The U-
torus and Mu-torus algorithms have nearly constant CPU
utilizations for both small and large message sizes,
whereas the U-torus algorithm has the highest
concurrency among all evaluated algorithms due to the
high parallelism provided by the recursive-doubling
method.

From the perspective of completion latency and CPU
utilization, S-torus is always the worst performer because
of its zero concurrency and extensive communication
overhead. As expected, due to the polling notification,
with increasing group size the S-torus protocol has a
nearly linear increase in completion latency and CPU
utilization for large messages.

The results of this research make it clear that no
single multicast algorithm is best in all cases for all
metrics. For example, as the number of dimensions in the
network increases, the Md-torus algorithm becomes
dominant. By contrast, for networks with fewer
dimensions supporting a large number of nodes, the Mu-
torus and the U-torus algorithms are expected to be the
most effective. For small-scale systems, separate
addressing appears to be an efficient and cost-effective
choice. Finally, the S-torus algorithm is determined to be
inefficient as compared to the alternatives in all the cases
considered. This inefficiency is due to the extensive
length of the paths used to multicast, which in turn leads
to long and widely varying completion latencies, as well
as a high degree of CPU utilization at the root node.

There are several possibilities for future research, one
of which is analytical modeling of the selected algorithms
to analyze system sizes beyond our existing testbed.
Another possible direction is evaluating the performance
of the selected algorithms for higher communication
layers, such as MPI. This approach will allow us to
obtain additional performance characteristics for high-
speed torus networks, as the higher communication layers
compared to the user-level API are more widely used.
Yet another possible direction is to extend and integrate
our SAN-based research with a MAN network, such as
Gigabit Ethernet. This integration is expected to
accurately mimic the real-world infrastructures of grids,
in which the communication is structured in hierarchical
network layers, from SANs to LANs, MANs, and WANs.

© 2002, HCS Research Lab, Univ. of Florida.
All Rights Reserved.

 10

6. Acknowledgments

This research was supported in part by the U.S.
Department of Defense, by matching funds from the
University of Florida for the iVDGL project supported by
the National Science Foundation, and by equipment
support of Dolphin Interconnect Solutions Inc. and Scali
Computer AS.

7. References

[1] P.K. McKinley, H.Xu, A.H. Esfahanian, and L.M. Ni,

“Unicast-Based Multicast Communication in Wormhole-
Routed Networks,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 5, No. 12, pp. 1252-1265, Dec.
1994.

[2] P.K. McKinley, Y.Tsai, and D.F. Robinson, “Collective
Communication in Wormhole-Routed Massively Parallel
Computers,” IEEE Computer, Vol. 28, No. 2, pp. 39-50,
Dec. 1995.

[3] R.F. DeMara and D.I. Moldovan, “Performance Indices
for Parallel Marker-Propagation,” Proc. of 1991 Intnl.
Conference on Parallel Processing, pp. 658-659, Aug.
1991.

[4] V. Kumar and V. Singh, “Scalability of Parallel
Algorithms for the All-Pairs Shortest Path Problem,”
Technical Report, ACT-OODS-058-90, MCC, Jan. 1991.

[5] Y. Tseng, D.K. Panda, and T Lai, “A Trip-Based
Multicasting Model in Wormhole-Routed Networks with
Virtual Channels,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 7, No. 2, pp. 138-150, Feb.
1996.

[6] R. Kesavan and D.K. Panda, “Multicasting on Switch-
Based Irregular Networks using Multi-Drop Path-Based
Multi-Destination Worms,” Proc. of Parallel Computing,
Routing, and Communication Workshop (PCRCW'97),
pp. 179-192, 1997.

[7] R. Sivaram, D.K. Panda, and C.B. Stunkel, “Multicasting
in Irregular Networks with Cut-Through Switches using
Tree-Based Multi-Destination Worms,” Proc. of Parallel
Computing, Routing, and Communication Workshop
(PCRCW'97), pp. 35-48, 1997.

[8] D.F. Robinson, P.K. McKinley, and B.H.C. Cheng,
“Optimal Multicast Communication in Wormhole-
Routed Torus Networks,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 6, No. 10, pp. 1029-1042,
Oct. 1995.

[9] D.F. Robinson, P.K. McKinley, and B.H.C. Cheng,
“Path-Based Multicast Communication in Wormhole-
Routed Unidirectional Torus Networks,” Journal of
Parallel and Distributed Computing, Vol. 45, No. 2, pp.
104-121, Sep. 1997.

[10] Scali Comp. AS, Scali System Guide Version 2.0, White
Paper, Scali Computer AS, Oslo, Norway, 2000.

[11] “SCI: Scalable Coherent Interface,” IEEE Approved
Standard 1596-1992, 1992.

[12] Scali Comp. AS, Web Site, http://www.scali.com.
[13] X. Lin and L.M. Ni, “Deadlock-Free Multicast

Wormhole Routing in Multicomputer Networks,” Proc.

of International Symposium on Computer Architecture,
pp. 116-124, 1991.

[14] P.K. McKinley and D.F. Robinson, “Collective
Communication in Wormhole-Routed Massively Parallel
Computers,” IEEE Computer, pp. 39-50, Vol. 28, No. 12,
Dec. 1995.

[15] W.J. Dally, “Virtual Channel Flow Control,” IEEE
Transactions on Parallel and Distributed Systems, Vol.
3, No. 2, pp. 194-205, Mar. 1992.

[16] L.M. Ni, Y. Gui, and S. Moore, “Performance Evaluation
of Switch-Based Wormhole Networks,” Proc. of
International Conference On Parallel Processing, pp.
32-40, 1995.

[17] L.M. Ni and P.K. McKinley, “A Survey of Wormhole
Routing Techniques In Direct Networks,” IEEE
Computer, Vol. 26, No. 2, pp. 62-76, Feb. 1993.

[18] K. Omang and B. Parady, “Performance Of Low-Cost
Ultrasparc Multiprocessors Connected By SCI,”
Technical Report, Department of Informatics, University
of Oslo, Norway, 1996.

[19] M. Ibel, K.E. Schauser, C.J. Scheiman and M. Weis,
“High-Performance Cluster Computing using SCI,”
Proc. of Hot Interconnects Symposium V, 1997.

[20] M. Sarwar and A. George, “Simulative Performance
Analysis of Distributed Switching Fabrics for SCI-Based
Systems,” Microprocessors and Microsystems, Vol. 24,
No. 1, pp. 1-11, Mar. 2000.

[21] D. Gonzalez, A. George, and M. Chidester,
"Performance Modeling and Evaluation of Topologies
for Low-Latency SCI Systems," Microprocessor and
Microsystems, Vol. 25, No. 7, pp. 343-356, Oct. 2001.

[22] H. Bugge, “Affordable Scalability using Multicubes,” in:
H. Hellwagner, A. Reinfeld (Eds.), SCI: Scalable
Coherent Interface, LNCS State-of-the-Art Survey,
Springer, pp. 167-174, Berlin, 1999.

[23] L.P. Huse, “Collective Communication on Dedicated
Clusters Of Workstations,” Proc. of EuroPVM/MPI ’99,
pp. 469-476, 1999.

[24] H. Wang, and D.M. Blough, “Tree-Based Multicast in
Wormhole-Routed Torus Networks,” Proc. PDPTA’98,
1998.

